

International Cooperation and Collaboration: The MPC Perspective

Presentation to International Asteroid Warning Network Steering Committee

> Timothy Spahr Director, Minor Planet Center Smithsonian Astrophysical Observatory 14 January 2014

--Making the case for cooperation and collaboration for surveying for NEOs

--The necessity for cooperation in follow-up selection

--Existing MPC resources to aid in collaboration

--Real-world examples of cooperation in action

--Needs as the survey and follow-up teams increase and increase capabilities. Don't forget physical follow-up as well!

The Need for Cooperation

Finite survey and follow-up capabilities necessitate distribution of effort

Direct duplication of effort has negative consequences, especially for the largest survey instruments

On any given day there can be 100 unconfirmed NEOs in need of targeted follow-up; cooperation there essential as well

Designated NEOs need orbit improvement for tracking purposes and impact probabilities

Don't forget physical follow-up coordination!

SKY COVERAGE Plot prepared 2014/01/11.959 by the Minor Planet Center

SKY COVERAGE

Follow-up capability all NEOs

Code \$	Total Obs. ◆	NEO Obs. 🗢	NEOs \$	NEO Nights	Site 🗢
-ALL-	8915349	113697	2430	19539	All sites
H21	20852	13949	1174	3732	Astron. Res. Obs., Westfield
807	12341	9964	910	2411	Cerro Tololo Obs., La Serena
291	9141	5876	824	2038	LPL/Spacewatch II
703	1713454	7265	755	1539	Catalina Sky Survey
F51	2070656	4860	941	1537	Pan-STARRS 1, Haleakala
G96	1921549	6899	829	1330	Mt. Lemmon Survey
A24	17126	4688	255	1033	New Millennium Obs., Mozzate
204	3431	2192	647	814	Schiaparelli Obs.
H45	10903	5455	210	757	Arkansas Sky Obs., Petit Jean Mtn. South
704	802599	3589	330	756	Lincoln Lab. ETS, New Mexico
160	3043	1918	117	601	Castelmartini

2012-06-01 - **2013-06-01**

Code \$	NEO Obs. 🗢	NEOs \$	NEO Nights	Site 🜲
-ALL-	29190	1965	7111	All sites
291	4648	682	1633	LPL/Spacewatch II
H21	4327	656	1373	Astron. Research Obs., Westfield
807	4170	592	1057	Cerro Tololo Obs., La Serena
G96	4128	514	786	Mt. Lemmon Survey
F51	2617	602	772	Pan-STARRS 1, Haleakala
568	960	236	325	Mauna Kea
H01	1217	205	298	Magdalena Ridge Obs., Socorro
204	511	210	233	Schiaparelli Obs.
691	562	126	187	Steward Obs., Kitt Peak - Spacewatch
H36	532	144	181	Sandlot Obs., Scranton

Existing Worldwide Observing Network

While many observatories, vast majority of the work being done by ~ 10 teams

MPC and Other Remedies & Resources

5

NEO Confirmation Page & NEO Confirmation Page Blog

Get ephemerides Reset form

Select object(s) from the current list of objects needing confirmation (NEO desirability score, discovery date, rough current position and ma given, as well as number of observations, arc and nominal H):

🔾 All o	bjects with $V =$	-30	to	30	, with Decl. between	-90	° and	+90	°, with an NEO desirability score of	0
100	%									

or just the objects selected below:	Deselect All	Select All
-------------------------------------	--------------	------------

Temp Desig 🕏	Scoreŧ	Discovery 🗢	R.A. ≑	Decl. 🗢	V \$	Updated 🗢	Note\$	NObs \$	Arc 🗢	H ¢
UA3E319	98	2014 01 13.4	10 25.8	-21 18	18.4	Updated Jan. 13.50 UT	•	8	0.06	23.7
🔲 d112283	70	2014 01 13.1	09 31.1	+25 59	19.3	Added Jan. 13.46 UT		4	0.03	17.8
O VAA5E09	67	2014 01 13.3	11 03.8	+31 42	20.5	Added Jan. 13.41 UT		4	0.01	17.4
VAA5CD6	45	2014 01 13.2	09 08.7	+40 05	19.6	Updated Jan. 13.51 UT		12	0.13	18.2
UAA5CCB	83	2014 01 13.2	09 13.8	+44 49	20.0	Updated Jan. 13.38 UT		8	0.08	17.2
VAA5CB5	71	2014 01 13.2	09 08.8	+41 50	19.8	Updated Jan. 13.40 UT		8	0.08	17.6
VAA5CA2	66	2014 01 13.2	08 37.0	+53 18	20.5	Updated Jan. 13.40 UT		7	0.11	18.8
OVAA5C97	83	2014 01 13.2	08 34.8	+55 33	19.8	Updated Jan. 13.40 UT		8	0.12	17.5
VAA5C88	45	2014 01 13.2	08 04.1	+55 43	20.2	Updated Jan. 13.39 UT		7	0.15	18.4
S002239	46	2014 01 12.0	05 49.6	-39 28	17.7	Updated Jan. 13.54 UT		13	1.48	9.2
P109J30	30	2014 01 11.4	09 28.8	-01 26	20.7	Updated Jan. 13.55 UT		5	1.76	18.1
P109J2r	95	2014 01 11.3	07 53.7	+30 32	20.5	Added Jan. 12.49 UT		2	0.01	19.3
🔲 VAA5896	42	2014 01 12.2	06 04.5	+55 38	20.3	Updated Jan. 13.22 UT		12	0.94	17.1
UA3E1BA	55	2014 01 12.3	07 48.1	+57 32	19.9	Updated Jan. 13.51 UT		11	0.94	17.6
VAA588C	98	2014 01 12.2	05 41.7	+54 01	20.1	Updated Jan. 13.30 UT		18	0.97	20.6
UAA5803	100	2014 01 12.1	00 48.5	+03 43	21.4	Added Jan. 12.22 UT		4	0.03	20.9
UA3DC02	35	2014 01 11.3	09 25.8	-09 04	19.3	Updated Jan. 12.75 UT		18	1.05	17.1
VA3DE03	85	2014 01 11.4	11 55.1	+02 28	19.5	Updated Jan. 13.45 UT	•	34	1.97	24.9
SW40q4	100	2014 01 10.4	09 21.0	+23 05	21.1	Updated Jan. 12.59 UT		9	1.90	21.0

G96 reported VA3E319

From G96 on Monday, 2014-01-13 12:01 UTC

{ "object": "VA3E319", "status": "reported", "observatory": "G96", "observer": "J. A. Johnson", "date": "2014-01-13", "time": "12:01:11" }

Posted in Follow Up | Leave a response

G96 targeting VA3E319

From G96 on Monday, 2014-01-13 11:54 UTC

{ "object": "VA3E319", "status": "targeting", "observatory": "G96", "observer": "J. A. Johnson", "date": "2014-01-13", "time": "11:54:39" }

Posted in Follow Up | Leave a response

G96 reported VAA5CD6

From G96 on Monday, 2014-01-13 10:23 UTC

{ "object": "VAA5CD6", "status": "reported", "observatory": "G96", "observer": "J. A. Johnson", "date": "2014-01-13", "time": "10:23:34" }

Posted in Follow Up | Leave a response

G96 targeting VAA492A

From G96 on Monday, 2014-01-13 10:21 UTC

NEO Coordination System

http://spaceguard.iasf-roma.inaf.it/SSystem/NEOCS/ NEOCSMain.html

The following table can be sorted by:	<u>Object</u>
The following table can be solled by:	<u>Magnitude</u>

Last update: 2014 Jan 13, 12:22 UT

Priority	Object	Inserted in this categ.	R.A.	Decl.	Elong.	Magn.	Sky Uncert. in arcsec	End of Visibility	
			Data for	2014 Jai	n 13, 23:0	00 UT			
UR	<u>2013 WV45</u>	2013/12/03	13h 16m	+49.2	110	21.8	37	2014 Jan 17	
UR	2013 XA22	2013/12/17	06h 29m	+27.7	163	20.8	7	2014 Jan 31	
UR	<u>2013 XV18</u>	2013/12/23	12h 50m	+82.6	113	21.8	35	2014 Jan 16	
UR	<u>2013 XY9</u>	2014/01/12	06h 11m	+09.3	155	21.9	3	2014 Jan 20	
UR	<u>2013 YB48</u>	2014/01/03	05h 24m	+22.7	148	21.5	12	2014 Jan 28	
UR	<u>2013 YD48</u>	2014/01/01	02h 36m	-33.1	89	19.3	0	2014 Jan 17	
UR	Objects from	the NEO Conf	irmation Pag	mation Page					
NE	<u>2013 WB44</u>	2013/12/04	05h 54m	+47.0	147	21.7	6	2014 Jan 23	
NE	2013 XE22	2013/12/18	05h 44m	+23.6	153	21.9	1	2014 Jan 23	
NE	2013 XG22	2013/12/20	05h 21m	+10.3	145	21.1	2	2014 Jan 26	
NE	<u>2013 XG4</u>	2013/12/09	06h 25m	+22.6	162	21.1	6	2014 Feb 07	
NE	<u>2013 XN24</u>	2013/12/25	12h 30m	-26.9	95	19.7	1	2014 Apr 30	
NE	<u>2013 XW3</u>	2013/12/07	05h 54m	+29.7	154	21.7	1	2014 Jan 24	
NE	2013 XZ20	2013/12/15	09h 47m	+61.6	134	21.8	1	2014 Jan 14	
NE	2013 YA38	2014/01/01	05h 24m	+12.6	146	21.7	2	2014 Jan 19	
NE	2013 YB14	2013/12/29	05h 57m	+24.5	156	21.2	1	2014 Jan 22	

Survey Cooperation

There's no substitute for different survey personnel discussing survey plans and strategy

Real-world example of Pan-STARRS and Catalina/Mt. Lemmon surveys discussing and implementing joint survey strategies

As the field grows, survey cooperation will become more complicated. I suspect we will need a meeting of the interested parties within the next year.

The MPC is happy to "coordinate the coordination" but always keep in mind the surveys generally know their individual strengths and weaknesses best (know thyself) ¹¹

Specific and Directed Observing Campaigns

Virtual Impactors (1999 AN₁₀, 99942 (Apophis)

Call for observations of radar or physical observation targets

Observations of potential spacecraft targets

We must be exceedingly careful requesting time on the largest groundbased facilities for Target of Opportunity (ToR) observing

We must also decide that some NEOs don't need follow-up after the discovery arc and initial orbit determination. Amors, non-PHAs, the smallest objects, and so on.

Self-follow-up

At some point self follow-up will be the rule of the day.

LSST and space-based systems require a cadence that acquires many observations over a long arc for many NEOs. To put it plainly, NEOCAM and Sentinel must operate in such a way to provide excellent orbits

Note that MLS and PS1 are approaching some self-follow up strategy already

Brian Marsden recommended for Main Belt Asteroids a simple cadence of a pair of nights at one lunation and a pair at another lunation. I suspect this would still work very well if we had very robust single-night tracklets

Perhaps we need to define what our goal is for the database of NEOs? What objects need follow-up, and what objects can we ignore?

Currently existing follow-up structure likely to be swamped by full PS1 and PS2 and upgraded Catalina/Mt. Lemmon

Tools for coordination of follow-up and survey planning exist and teams are communicating

We need someone from the physical observations community involved to help avoid duplication here, but a much knottier issue because this is a science problem