ESA status IAWN

18 Oct 2018

Detlef Koschny Rüdiger Jehn Gunther Sessler Udo Kugel

Telescopes

56-cm Test-Bed Telescope

- #01 operational at Cebreros, Spain used for s/w tests
- #02: Infrastructure deployment has started, telescope installation early 2019. First light expected spring 2019
- 1.2-m Flyeye telescope
 - Issues with initial camera development new development initiated
 - First telescope will go to Sicily, Mt. Mufara
 - Tasking and data processing s/w under development
- Fireball monitor

ESA UNCLASSIFIED - For Official Use

- Space-based camera to observe fireballs
- Invitation to Tender for Engineering Model is open

| Oct 2018 | Slide 2

European Space Agency

Software

NEODyS Orbit Determination

- Operational at ESAs site in Italy (ESRIN)
- Currently being run in parallel to NEODyS/Pisa

NEODyS Impact Monitoring

- ESA version under development
- Move to ESRIN and training of operators in 2019
- An 'impact effects knowledge base' is currently under development
 - Lead by scientific institute
 - Will be followed by contract lead by software company to develop an operational tool to quickly estimate impact effects

ESA UNCLASSIFIED - For Official Use

ESA | Oct 2018 | Slide 3

European Space Agency

Information distribution

Close Approach Fact Sheet

- Produced for asteroids with a computed impact probability
- Always for apparent magnitude brighter than 11 mag
- Pushed to customers first interface is Germany
- Workshop with other member countries imminent

http://neo.ssa.esa.int/cafs

space situational awareness → NEAR-EARTH OBJECTS

Close approach fact sheet for asteroid 2018 LA A small asteroid impacted the Earth on 02 June 2018.

Impact date	2018-06-02
Impact time	~ 16:45 UTC
Minimum distance from Earth surface	The object impacted the Earth
Fly-by speed	17.0 km/s
Size range	2-5 m

Orbit information

Epoch	Orbital period years (days)	Aphelion Distance au	Perihelion distance au	Eccentricity	Inclination deg	Rotation Period hours
2018-05-02	1.61 (586)	1.959	0.783	0.429	4.279	Not known

· Clast

	s - Last Update: 2018-06-05			
Object	Release date	Document version	Download	
2018LA	2018 June 05	1.0	Download PDF	
2010WC9	2018 May 15	1.0	Download PDF	
2012TC4	2017 October 06	2.1	Download PDF	
2012TC4	2017 September 28	0.4	Download PDF	
3122 Florence	2017 August 30	1.0	Download PDF	

ESA UNCLASSIFIED - For Official Use

ESA | Oct 2018 | Slide 4

European Space Agency

Detailed criteria for Close Approach Fact Sheet (follows IAWN agreement)

- Case 1: close approach of an object with no impact probabilities.
 - **The close approach distance is smaller than the GEO distance, or**
 - The visual magnitude at close approach is brighter than 11
- Case 2: any object with an impact probability with Earth greater than 1 % (and smaller than 100%) within the next 50 years.
- Case 3: any object with an impact probability greater than 1 % within the next 50 years, with regard to a body other than Earth (e.g. Moon, Mars, Jupiter, etc.).
- Case 4: any object predicted to impact the Earth's atmosphere and create a visible phenomenon, but which does not generate a release of energy sufficiently high to cause potential impact damage Need to establish the kinetic energy threshold to use

ESA UNCLASSIFIED - For Official Use

ESA | Oct 2018 | Slide 5

###