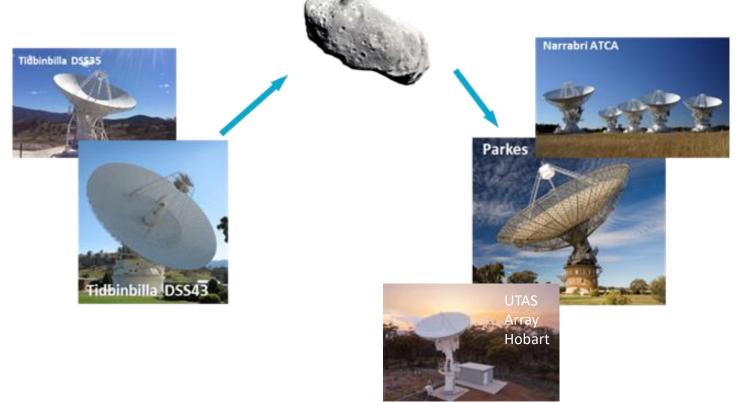
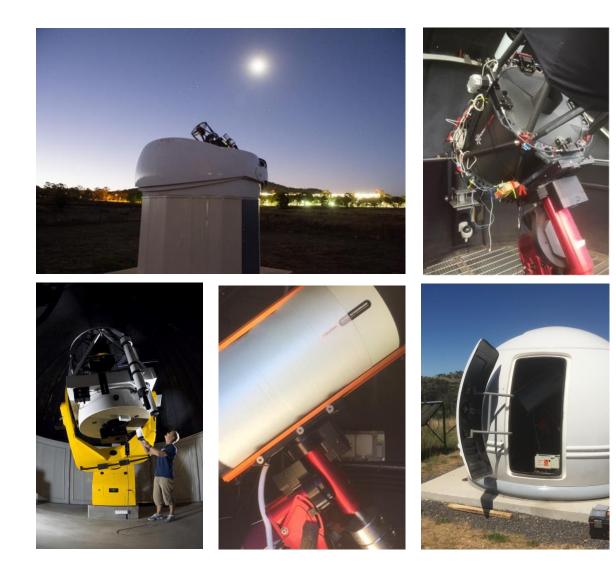
Deep Space Radar/Optical Detection of Near Earth Asteroids from the Southern Hemisphere.


Ed Kruzins^{1,2}, Lance Benner³ Russell Boyce¹ Melrose Brown¹, David Coward^{5,6}, Phil Edwards², Jon Giorgini³, Shinji Horiuchi², Aakash Joshi¹, John Kennewell^{5,7}, Andrew Lambert¹, Joseph Lazio³, Benjamin Linsten^{5,6}, Guifre Molera Calves⁴, Edwin Peters¹, Chris Phillips², Jamie Stevens², Arie Verveer^{5,7}, Asha Wiltshier¹, Calum Workman¹

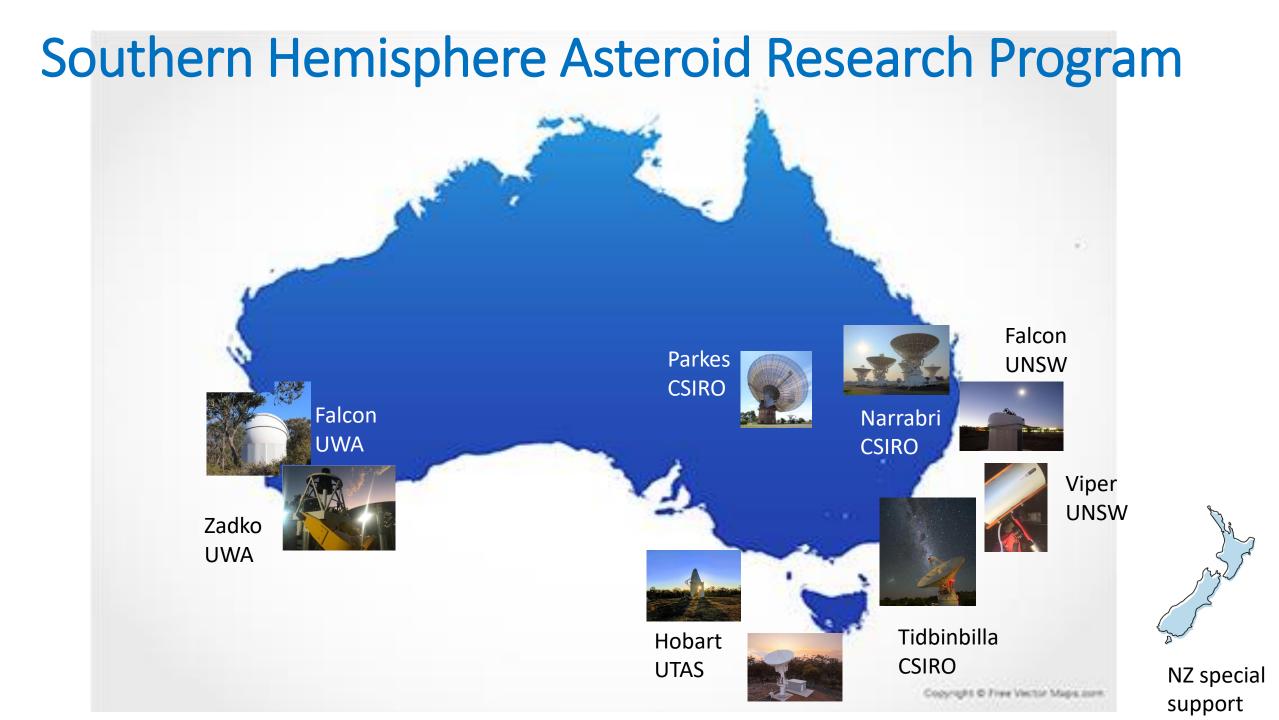
- ¹University of New South Wales, Canberra, Australia
- ²Commonwealth Scientific Industrial Research Organisation, Sydney, Australia
- ³ Jet Propulsion Laboratory, California Institute of Technology. Pasadena, California, USA
- ⁴ University of Tasmania, Hobart, Tasmania, Australia
- ⁵ University of Western Australia, Perth, Western Australia, Australia
- ⁶Australian Research Council Centre of Excellence for Gravitational Wave Discovery(OzGr).
- ⁷ Australian Space Academy Meckering, Western Australia

NEO Detection from Southern Hemisphere from 2015 using Scientific Bistatic Radar.

- In 2015 the Southern Hemisphere Asteroid Radar Program began its first scientific radar tests*.
- Doppler compensated CW transmission at 2.11 GHz (14.2cm S band) or 7.14 GHz (4.2cm X band).
- Transmit from 70m and 34m Tidbinbilla antennas.
- Reflected echoes successfully received at 64m Parkes
- Reflected echoes successfully received at 5x22m Australia Telescope Compact Array Narrabri Australia
- Joined by University of Tasmania 12m, 26m and 30m antennas April 2021.



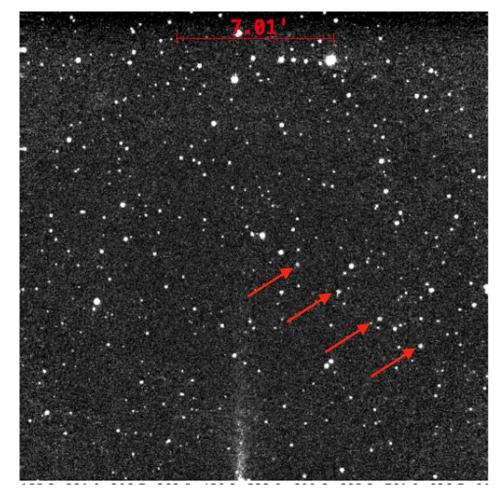
Antennas and telescopes in the Southern Hemisphere Asteroid Radar Program (SHARP).


*"First Detection of Two Near Earth Asteroids with a Southern Hemisphere Planetary Radar System" Benson.C, Reynolds.J, Stacy.N, Benner.L, Edwards.P, Baines.G, Boyce.R, Giorgini.J, Jao.J, Martinez.G, Slade.M, Teitlebaum.L, Anabtawi.A, Kahan.D, Oudrhiri.K, Phillips.C, Stevens.J, Kruzins.E, Lazio.J. Radio Science52 (11), 1344-1351 2017

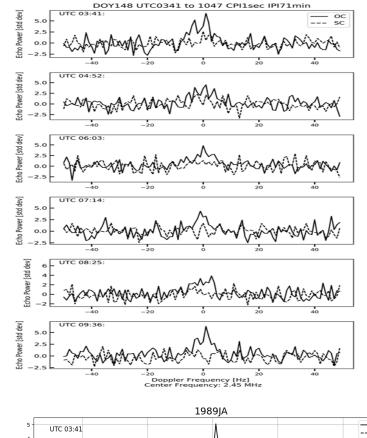
NEO Detection from Southern Hemisphere from 2022 Radar Augmentation using Small Optical Telescopes

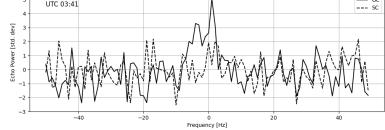
- In 2022 a program of augmenting RADAR observations with sub-metre-class 0.3-0.5m optical apertures began*.
- Why optical systems have a flexible search capacity, are rapidly tasked, cheap to operate, provide good astrometric and photometric results and are operationally adaptable with large radio frequency systems.
- Targets are exclusively Apollo/ATEN class NEOs because of their Earth orbit crossing nature and hazardous classification.
- Sub-metre class wide field optical telescopes in this group:
 - USAFA-led 0.5m f8.1 Falcon Telescope Network includes nodes in Canberra ACT and Gin Gin WA (operated by UNSW and UWA)
 - Viper 0.4m telescope (UNSW)
 - Zadko 1m and C14 telescopes (UWA)

^{*&}quot;Augmentation of a Southern Hemisphere Deep Space Bistatic Radar with Small Optical Systems to Detect Near Earth and other Space Objects. "Kruzins.E, etal. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI; 2022, USA



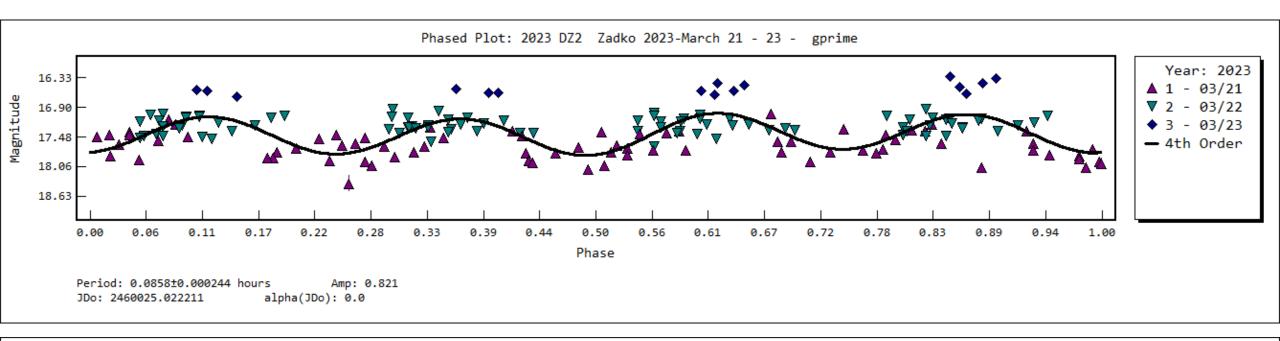
Southern Hemisphere Asteroid Observations 2022-23


Asteroid	Date	Approx.	Range (AU)	Comments
		Diam Km		PHA (Potentially Hazardous Asteroid)
2005 LW3	2022 Nov 22-23	0.15	0.0110	Observed in Radar and optical, PHA
2015 RN35	2022 Dec 14-15	0.08	0.0053	Observed in optical , PHA
				Candidate for a space mission
2014 HK129	2022 Dec 19-20	0.19	0.018	Observed in Radar, PHA
2010 XC15	2022 Dec 26-27	0.17	0.0073	Observed in optical, PHA
2011 AG5	2023 Feb 2-3	0.16	0.012	Observed in Radar and optical, PHA
				Candidate for a space mission
2005 YY128	2023 Feb 15-16	0.95	0.031	Observed in Radar and optical PHA
2012 KY3	2023 Apr 13	0.66	0.033	Observed in Radar and optical PHA
2006 HV5	2023 Apr 27 -28	0.31	0.018	Observed in Radar, PHA
1994 XD	2023 Jun 9-10	0.48	0.038	Observed in Radar and optical, PHA
2018 UY	2023 Jul 11-12	0.24	0.020	Observed in Radar and optical, PHA
2020 UQ3	2023 Jul 15-16	0.06	0.019	Observed in Radar, PHA
2016 LY48	2023 Sep 17-18	0.18	0.0111	Large pointing uncertainties?

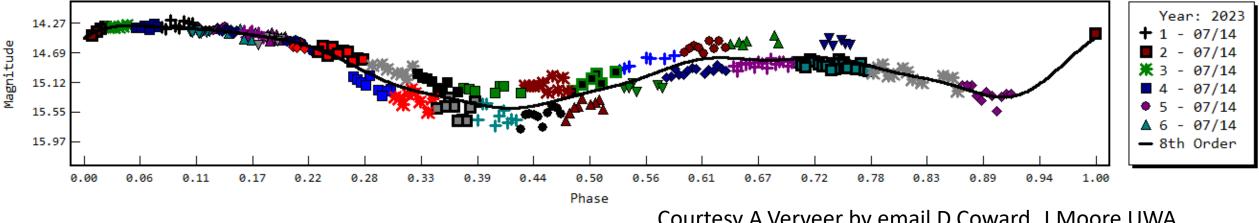

1989 JA 27-28 May 2022- NEO with a companion

Orbits Sun every 862 days, diameter of 1800m range 8 lunar distances (LD).

Courtesy of Gilmore, Kilmarten, Glassey 0.35m F11 optical telescope NZ special observers



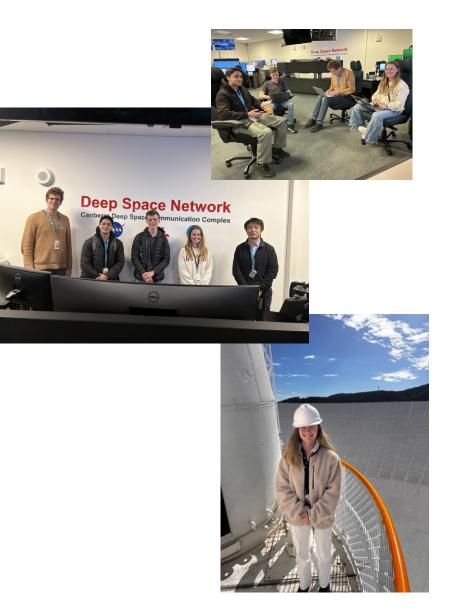
CDSCC/ATCA SHARP Radar spectra for 1989 JA Courtesy S.Horiuchi & S.Darwell 2022.



Courtesy of GSSR Radar Observations of Near-Earth Asteroid 7335 1989 JA (nasa.gov)

2023 DZ2 2123 Mar 2023 & 2018 UY 14-16 Jul 2023 – Improved light curves

Phased Plot: 2018 UY Zadko (D20) 2023-July-14 to 2023-July-16 V Filter



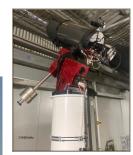
Period: 7.1100±0.000442 hours Amp: 1.191 alpha(JDo): 0.0 JDo: 2460140.112164

Courtesy A.Verveer by email D.Coward, J.Moore UWA

Southern Hemisphere Asteroid Student Research Program

- The Southern Hemisphere Asteroid Research student program now includes graduate and post graduate students.
- Civilian and ADFA cadets/4th years
- Student research and supervisor/mentor group of Uni's, CSIRO, JPL
 - Future NEA target planning for radar bistatic and small optical telescopes
 - Assisting JPL/NASA databases
 - Simulation of echo signals and interpretation vs NEO characteristics
 - Development of Stokes Vector Analysis with existing radar bistatic NEA data

Next steps for Southern Hemisphere Asteroid Research Program


- Leverage the progress from the NEO campaigns and continue with observations into 2024.
 - Plan new NEO targets for radar bistatic/small optical telescopes
 - Develop Stokes Vector Analysis further
 - Test new optical sensors including Event Based Sensors
 - Extend asteroid target interpretations to SDA.
 - Build STEM program
- Contribute to the International Asteroid Warning Network (IAWN)
 - Aid asteroid orbit determination and risk assessment
 - Contribute to global database on potentially hazardous asteroids and rapid response

See following ASRC paper by Dr Shinji Horiuchi

